Superior Mind wrote:
$55 for a piece of pvc?
(Made of PET Plastic)
Polyethylene terephthalate
Polyethylene terephthalate (sometimes written poly(ethylene terephthalate)), commonly abbreviated PET, PETE, or the obsolete PETP or PET-P), is a thermoplastic polymer resin of the polyester family and is used in synthetic fibers; beverage, food and other liquid containers; thermoforming applications; and engineering resins often in combination with glass fiber.
Depending on its processing and thermal history, polyethylene terephthalate may exist both as an amorphous (transparent) and as a semi-crystalline material. The semi crystalline material might appear transparent (spherulites < 500 nm) or opaque and white (spherulites up to a size of some µm) depending on its crystal structure and spherulite size. Its monomer (bis-ß-hydroxyterephthalate) can be synthesized by the esterification reaction between terephthalic acid and ethylene glycol with water as a byproduct, or by transesterification reaction between ethylene glycol and dimethyl terephthalate with methanol as a byproduct. Polymerization is through a polycondensation reaction of the monomers (done immediately after esterification/transesterification) with ethylene glycol as the byproduct (the ethylene glycol is directly recycled in production).
The majority of the world's PET production is for synthetic fibers (in excess of 60%) with bottle production accounting for around 30% of global demand. In discussing textile applications, PET is generally referred to as simply "polyester" while "PET" is used most often to refer to packaging applications.
Some of the trade names of PET products are Dacron, Diolen, Tergal, Terylene, and Trevira fibers, Cleartuf, Eastman PET and Polyclear bottle resins, Hostaphan, Melinex, and Mylar films, and Arnite, Ertalyte, Impet, Rynite and Valox injection molding resins. The polyester industry makes up about 18% of world polymer production and is third after polyethylene (PE) and polypropylene (PP).
Chemical structure of polyethylene terephthalate
PET consists of polymerized units of the monomer ethylene terephthalate, with repeating C10H8O4 units. It contains the chemical elements carbon, hydrogen, and oxygen. If fully burned, it produces only carbon dioxide (CO2) and water (H2O). PET is commonly recycled, and has the number "1" as its recycling symbol.
Crystallization occurs when polymer chains fold up on themselves in a repeating, symmetrical pattern. Long polymer chains tend to become entangled on themselves, which prevents full crystallization in all but the most carefully controlled circumstances. PET is no exception to this rule; 60% crystallization is the upper limit for commercial products, with the exception of polyester fibers.
PET in its natural state is a crystalline resin. Clear products can be produced by rapidly cooling molten polymer to form an amorphous solid. Like glass, amorphous PET forms when its molecules are not given enough time to arrange themselves in an orderly fashion as the melt is cooled. At room temperature the molecules are frozen in place, but if enough heat energy is put back into them, they begin to move again, allowing crystals to nucleate and grow. This procedure is known as solid-state crystallization.
Like most materials, PET tends to produce many small crystallites when crystallized from an amorphous solid, rather than forming one large single crystal. Light tends to scatter as it crosses the boundaries between crystallites and the amorphous regions between them. This scattering means that crystalline PET is opaque and white in most cases. Fiber drawing is among the few industrial processes that produces a nearly single-crystal product.
Degradation
PET is subject to various types of degradations during processing. The main degradations that can occur are hydrolytic, thermal and probably most important thermal oxidation. When PET degrades, several things happen: discoloration, chain scissions resulting in reduced molecular weight, formation of acetaldehyde and cross-links ("gel" or "fish-eye" formation). Discoloration is due to the formation of various chromophoric systems following prolonged thermal treatment at elevated temperatures. This becomes a problem when the optical requirements of the polymer are very high, such as in packaging applications. Acetaldehyde is normally a colorless liquid with a fruity smell. It forms naturally in fruit, but it can cause an off-taste in bottled water. Acetaldehyde forms in PET through the "abuse" of the material. High temperatures (PET decomposes above 300 °C or 570 °F), high pressures, extruder speeds (excessive shear flow raises temperature) and long barrel residence times all contribute to the production of acetaldehyde. When acetaldehyde is produced, some of it remains dissolved in the walls of a container and then diffuses into the product stored inside, altering the taste and aroma. This is not such a problem for non-consumables (such as shampoo), for fruit juices (which already contain acetaldehyde), or for strong-tasting drinks like soft drinks. For bottled water, however, low acetaldehyde content is quite important, because if nothing masks the aroma, even extremely low concentrations (10-20 parts per billion parts of resin, by weight) of acetaldehyde can produce an off-taste. The thermal and thermooxidative degradation results in poor processibility characteristics and performance of the material.
One way to alleviate this is to use a copolymer. Comonomers such as CHDM or isophthalic acid lower the melting temperature and reduces the degree of crystallinity of PET (especially important when the material is used for bottle manufacturing). Thus the resin can be plastically formed at lower temperatures and/or with lower force. This helps to prevent degradation, reducing the acetaldehyde content of the finished product to an acceptable (that is, unnoticeable) level. See copolymers, above. Other ways to improve the stability of the polymer is by using stabilizers, mainly antioxidants such as phosphites. Recently, molecular level stabilization of the material using nanostructured chemicals has also been considered.
Antimony
Antimony (Sb) is a catalyst that is often used as Antimony trioxide (Sb2O3) or Antimony triacetate in the production of PET. It remains in the material and can thus in principle migrate out into food and drinks. Although antimony trioxide is of low toxicity, its presence is still of concern. The Swiss Federal Office of Public Health investigated the amount of antimony migration, comparing waters bottled in PET and glass: the antimony concentrations of the water in PET bottles was higher, but still well below the allowed maximal concentrations. (report available in German and French only) The Swiss Federal Office of Public Health concluded that small amounts of antimony migrate from the PET into bottled water, but that the health risk of the resulting low concentrations is negligible (1% of the "tolerable daily intake" determined by the WHO). A later (2006) but more widely publicized study by a group of geochemists at the University of Heidelberg headed by William Shotyk found similar amounts of antimony in water in PET bottles.